$hide=mobile

[Booklet] Vietnamese Mathematical Competitions 2018

Vietnam National Mathematical Olympiad 2018

  1. The sequence $(x_n)$ is defined as follows $$x_1=2,\quad x_{n+1}=\sqrt{x_n+8}-\sqrt{x_n+3},\, \forall n\geq 1.$$ a) Prove that $(x_n)$ has a finite limit and find that limit.
    b) For every $n\geq 1$, prove that $$n\leq x_1+x_2+\dots +x_n\leq n+1.$$
  2. We have a scalene acute triangle $ABC$ (triangle with no two equal sides) and a point $D$ on side $BC$. Pick a point $E$ on side $AB$ and a point $F$ on side $AC$ such that $\angle DEB=\angle DFC$. Lines $DF$, $DE$ intersect $AB$, $AC$ at points $M$, $N$, respectively. Denote $(I_1)$, $(I_2)$ by the circumcircles of triangles $DEM$, $DFN$ in that order. The circle $(J_1)$ touches $(I_1)$ internally at $D$ and touches $AB$ at $K$, circle $(J_2)$ touches $(I_2)$ internally at $D$ and touches $AC$ at $H$. $P$ is the intersection of $(I_1)$, $(I_2)$ different from $D$. $Q$ is the intersection of $(J_1)$, $(J_2)$ different from $D$.
    a) Prove that all points $D$, $P$, $Q$ lie on the same line.
    b) The circumcircles of triangles $AEF$, $AHK$ intersect at $A$, $G$. $(AEF)$ also cut $AQ$ at $A$, $L$. Prove that the tangent at $D$ of $(DQG)$ cuts $EF$ at a point on $(DLG)$. 
  3. An investor has two rectangular pieces of land of size $120\times 100$.
    a) On the first land, she want to build a house with a rectangular base of size $25\times 35$ and nines circular flower pots with diameter $5$ outside the house. Prove that even the flower pots positions are chosen arbitrary on the land, the remaining land is still sufficient to build the desired house.
    b) On the second land, she want to construct a polygonal fish pond such that the distance from an arbitrary point on the land, outside the pond, to the nearest pond edge is not over $5$. Prove that the perimeter of the pond is not smaller than $440-20\sqrt{2}$. 
  4. On the Cartesian plane the curve $(C)$ has equation $x^2=y^3$. A line $d$ varies on the plane such that $d$ always cut $(C)$ at three distinct points with $x$-coordinates $x_1$, $x_2$, $x_3$.
    a) Prove that the following quantity is a constant $$\sqrt[3]{\frac{x_1x_2}{x_3^2}}+\sqrt[3]{\frac{x_2x_3}{x_1^2}}+\sqrt[3]{\frac{x_3x_1}{x_2^2}}.$$b. Prove the following inequality $$\sqrt[3]{\frac{x_1^2}{x_2x_3}}+\sqrt[3]{\frac{x_2^2}{x_3x_1}}+\sqrt[3]{\frac{x_3^2}{x_3x_1}}<-\frac{15}{4}.$$
  5. For two positive integers $n$ and $d$, let $S_n(d)$ be the set of all ordered $d$-tuples $(x_1,x_2,\dots ,x_d)$ that satisfy all of the following conditions
    • $x_i\in \{1,2,\dots ,n\}$ for every $i\in\{1,2,\dots ,d\}$;
    • $x_i\ne x_{i+1}$ for every $i\in\{1,2,\dots ,d-1\}$;
    • There does not exist $i,j,k,l\in\{1,2,\dots ,d\}$ such that $i<j<k<l$ and $x_i=x_k$, $x_j=x_l$;
    a) Compute $|S_3(5)|$.
    b) Prove that $|S_n(d)|>0$ if and only if $d\leq 2n-1$. 
  6. The sequence $(x_n)$ is defined as follows $$x_0=2,\, x_1=1,\quad x_{n+2}=x_{n+1}+x_n$$ for every non-negative integer $n$.
    a) For each $n\geq 1$, prove that $x_n$ is a prime number only if $n$ is a prime number or $n$ has no odd prime divisors.
    b) Find all non-negative pairs of integers $(m,n)$ such that $x_m|x_n$. 
  7. Acute scalene triangle $ABC$ has $G$ as its centroid and $O$ as its circumcenter. Let $H_a$, $H_b$, $H_c$ be the projections of $A$, $B$, $C$ on respective opposite sides and $D$, $E$, $F$ be the midpoints of $BC$, $CA$, $AB$ in that order. $\overrightarrow{GH_a}$, $\overrightarrow{GH_b}$, $\overrightarrow{GH_c}$ intersect $(O)$ at $X$, $Y$, $Z$ respectively.
    a) Prove that the circle $(XCE)$ pass through the midpoint of $BH_a$.
    b) Let $M$, $N$, $P$ be the midpoints of $AX$, $BY$, $CZ$ respectively. Prove that $\overleftrightarrow{DM}$, $\overleftrightarrow{EN}$, $\overleftrightarrow{FP}$ are concurrent.

Vietnam Team Selection Test 2018

  1. Let $ABC$ be a acute, non-isosceles triangle. $D$, $E$, $F$ are the midpoints of sides $AB$, $BC$, $AC$, resp. Denote by $(O)$, $(O')$ the circumcircle and Euler circle of $ABC$. An arbitrary point $P$ lies inside triangle $DEF$ and $DP$, $EP$, $FP$ intersect $(O')$ at $D'$, $E'$, $F'$, resp. Point $A'$ is the point such that $D'$ is the midpoint of $AA'$. Points $B'$, $C'$ are defined similarly.
    a) Prove that if $PO=PO'$ then $O\in(A'B'C')$;
    b) Point $A'$ is mirrored by $OD$, its image is $X$. $Y$, $Z$ are created in the same manner. $H$ is the orthocenter of $ABC$ and $XH$, $YH$, $ZH$ intersect $BC, AC, AB$ at $M$, $N$, $L$ resp. Prove that $M$, $N$, $L$ are collinear. 
  2. For every positive integer $m$, a $m\times 2018$ rectangle consists of unit squares (called "cell") is called complete if the following conditions are met
    1. In each cell is written either a "$0$", a "$1$" or nothing;
    2. For any binary string $S$ with length $2018$, one may choose a row and complete the empty cells so that the numbers in that row, if read from left to right, produce $S$ (In particular, if a row is already full and it produces $S$ in the same manner then this condition ii. is satisfied).
    A complete rectangle is called minimal, if we remove any of its rows and then making it no longer complete.
    a) Prove that for any positive integer $k\le 2018$ there exists a minimal $2^k\times 2018$ rectangle with exactly $k$ columns containing both $0$ and $1$.
    b) A minimal $m\times 2018$ rectangle has exactly $k$ columns containing at least some $0$ or $1$ and the rest of columns are empty. Prove that $m\le 2^k$. 
  3. For every positive integer $n\ge 3$, let $\phi_n$ be the set of all positive integers less than and coprime to $n$. Consider the polynomial $$P_n(x)=\sum_{k\in\phi_n} {x^{k-1}}.$$ a) Prove that $P_n(x)=(x^{r_n}+1)Q_n(x)$ for some positive integer $r_n$ and polynomial $Q_n(x)\in\mathbb{Z}[x]$ (not necessary non-constant polynomial).
    b) Find all $n$ such that $P_n(x)$ is irreducible over $\mathbb{Z}[x]$. 
  4. Let $a\in\left[ \tfrac{1}{2}, \tfrac{3}{2}\right]$ be a real number. Sequences $(u_n)$, $(v_n)$ are defined as follows $$u_n=\frac{3}{2^{n+1}}\cdot (-1)^{\lfloor2^{n+1}a\rfloor},\quad v_n=\frac{3}{2^{n+1}}\cdot (-1)^{n+\lfloor 2^{n+1}a\rfloor}.$$ a) Prove that $${{({{u}_{0}}+{{u}_{1}}+\cdots +{{u}_{2018}})}^{2}}+{{({{v}_{0}}+{{v}_{1}}+\cdots +{{v}_{2018}})}^{2}}\le 72{{a}^{2}}-48a+10+\frac{2}{{{4}^{2019}}}.$$ b) Find all values of $a$ in the equality case. 
  5. In a $m\times n$ square grid, with top-left corner is $A$, there is route along the edges of the grid starting from $A$ and visits all lattice points (called "nodes") exactly once and ending also at $A$. A turning point is a node that is different from $A$ and if two edges on the route intersect at the node are perpendicular.
    a) Prove that this route exists if and only if at least one of $m$, $n$ is odd.
    b) If such a route exists, then what is the least possible of turning points?
  6. Triangle $ABC$ circumscribed $(O)$ has $A$-excircle $(J)$ that touches $AB$, $BC$, $AC$ at $F$, $D$, $E$, resp.
    a) $L$ is the midpoint of $BC$. Circle with diameter $LJ$ cuts $DE$, $DF$ at $K$, $H$. Prove that $(BDK)$, $(CDH)$ has an intersecting point on $(J)$.
    b) Let $EF\cap BC =\{G\}$ and $GJ$ cuts $AB$, $AC$ at $M$, $N$, resp. $P\in JB$ and $Q\in JC$ such that $$\angle PAB=\angle QAC=90{}^\circ .$$$PM\cap QN=\{T\}$ and $S$ is the midpoint of the larger $BC$-arc of $(O)$. $(I)$ is the incircle of $ABC$. Prove that $SI\cap AT\in (O)$.

Post a Comment


$hide=home

$hide=mobile$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$show=mobile$type=complex$c=6$spa=0$t=oot$h=1$sn=0$rm=0$m=0$l=0$src=random$sn=0

$hide=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Name

Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,2,Amsterdam,5,Ấn Độ,1,An Giang,16,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,47,Bắc Giang,45,Bắc Kạn,1,Bạc Liêu,8,Bắc Ninh,43,Bắc Trung Bộ,8,Bài Toán Hay,5,Balkan,37,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,43,Benelux,13,Bình Định,39,Bình Dương,19,Bình Phước,37,Bình Thuận,30,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,5,Buôn Ma Thuột,1,BxMO,12,Cà Mau,12,Cần Thơ,13,Canada,39,Cao Bằng,6,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,308,Chu Tuấn Anh,1,Chuyên Đề,122,Chuyên Sư Phạm,30,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,603,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,25,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,51,Đắk Nông,5,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi HSG,1500,Đề Thi JMO,1,Điện Biên,7,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,46,Đồng Tháp,50,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,31,EGMO,16,ELMO,19,EMC,8,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,25,Gauss,1,GDTX,3,Geometry,12,Gia Lai,24,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,25,Hà Nội,220,Hà Tĩnh,66,Hà Trung Kiên,1,Hải Dương,46,Hải Phòng,40,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,32,HKUST,6,Hòa Bình,12,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,7,HSG 10,91,HSG 11,78,HSG 12,523,HSG 9,373,HSG Cấp Trường,76,HSG Quốc Gia,97,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hùng Vương,2,Hưng Yên,28,Hương Sơn,1,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,24,IMO,51,India,45,Inequality,13,InMC,1,International,303,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,14,KHTN,49,Kiên Giang,61,Kim Liên,1,Kon Tum,17,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,31,Lạng Sơn,18,Langlands,1,Lào Cai,11,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,41,Lớp 10,10,Lớp 10 Chuyên,430,Lớp 10 Không Chuyên,218,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,10,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,9,MYM,74,MYTS,4,Nam Định,30,Nam Phi,1,National,249,Nesbitt,1,Newton,4,Nghệ An,48,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,3,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,38,Ninh Thuận,14,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,94,Olympic 10/3,3,Olympic 11,86,Olympic 12,28,Olympic 24/3,6,Olympic 27/4,19,Olympic 30/4,65,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,10,Olympic Toán,292,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,26,Phú Yên,24,Phùng Hồ Hải,1,Phương Trình Hàm,10,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,41,Putnam,25,Quảng Bình,39,Quảng Nam,28,Quảng Ngãi,31,Quảng Ninh,41,Quảng Trị,23,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,68,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,22,Shortlists,55,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,27,Sơn La,11,Spain,8,Star Education,3,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,4,Tây Ban Nha,1,Tây Ninh,25,Thạch Hà,1,Thái Bình,37,Thái Nguyên,33,Thái Vân,2,Thanh Hóa,54,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,7,Thừa Thiên Huế,34,Tiền Giang,18,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TP Hồ Chí Minh,112,Trà Vinh,5,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,33,Trại Hè Hùng Vương,24,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,12,Trường Đông,17,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,55,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Tập,44,Tuymaada,4,Undergraduate,64,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,1,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,26,Vĩnh Long,18,Vĩnh Phúc,58,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,42,VNTST,20,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,25,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,16,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
ltr
item
MOlympiad: [Booklet] Vietnamese Mathematical Competitions 2018
[Booklet] Vietnamese Mathematical Competitions 2018
MOlympiad
https://www.molympiad.xyz/2020/04/booklet-vietnamese-mathematical.html
https://www.molympiad.xyz/
https://www.molympiad.xyz/
https://www.molympiad.xyz/2020/04/booklet-vietnamese-mathematical.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy