$hide=mobile

Lịch Sử Phép Tính Vi Tích Phân: Issac Newton Khơi Nguồn Cảm Hứng Sáng Tạo

Người ta nói sự thực thì chính các phương trình đã làm thay đổi thế giới, vậy đối với quý vị phương trình sau nó có gì là quan trọng?
  1. Phương trình này cho ta biết điều gì?. Nó giúp ta tìm ra tốc độ biến thiên tức thời của một đại lượng phụ thuộc (ví dụ như) thởi gian, tính xem giá trị của nó thay đổi thế nào trong một khoảng thới gian ngắn bằng cách chia cho khoảng gian đó. Sau đó cho khoảng thời gian đó nhó tùy ý.
  2. Tại sao nó lại quan trọng?. Nó cung cấp một cơ sở chặt chẽ cho giải tích, phương pháp chính mà các nhà khoa học dùng để mô tả thể giới tự nhiên.
  3. Nó đã dẫn tới những gì?. Tính toán các tiếp tuyến và diện tích. Các công thức tính thể tích của các khối và độ đài các đường cong. Định luật thứ hai của Newton về chuyển động. các phương trình vi phân. Các định luật bảo toàn năng lượng và động luợng. Hầu hết các địa hạt của vật lý toàn.
Năm 1665, nước Anh đang trong triều đại vua Charles II Kinh đô London là một đô thị ngỗn ngang với hơn nửa triệu dân và khoa học đang ở những bước phát triển đầu tiên với tốc độ ngày càng nhanh. Hội Hoàng gia, có lẻ là hội khoa học cổ nhất còn tồn tại đến nay, được thành lập 5 năm về trước, và Charles đã ban cho nó một quy chế hoàng gia. Những người giàu có sống trong những ngôi nhà nguy nga, và việc buôn bán của họ ngày càng phát đạt, nhưng những người nghèo khổ phải sống chui rúc trong các con phố chật chội khuất bóng dưới những tòa nhà xiêu vẹo, ngày càng nhô ra do chúng được đôn cao lên, hết tầng này đến tầng khác. Điều kiện vệ sinh cũng không đảm bảo, chuột và các loại sâu bọ khác nhan nhản khắp nơi. Cuối năm 1666, một phần năm dân số London đã chết do dịch hạch, lây lan đầu tiên do Chuột và sau đó là do con người. Đó là thảm họa tồi tệ nhất trong lịch sử của kinh đô này, và chính bi kịch đó cũng đã xảy ra khắp châu Âu và Bắc Phi. Nhà vua đã vội vã rời kinh đó tới một vùng quê sạch sẽ hơn ở Oxfordshire, đầu năm 1666 mới quay trở lại. Không ai biết nguyên nhân của tai ương này, và các nhà chức trách của thành phố đã tìm mọi phương cách – đốt lửa liên tục để làm sạch không khí, thiêu cháy tất cả những thứ nặng mùi, chôn cất xác chết nhanh chóng trong các hố. Họ giết rất nhiều Chó mèo, nhưng trớ trêu thay họ lại loại bỏ chính hai loài động vật kiểm soát số lượng chuột.

Trong suốt hai năm đó, một sinh viên bí ẩn và khiêm tốn ở đại học Trinity, Cambridge, đã hoàn thành khóa học của mình. Với hy vọng tránh nạn dịch hạch, anh trở về ngôi nhà mình đã sinh ra, nơi mẹ anh đang quản lý một trang trại. Cha anh mất không lâu Sau khi anh sinh ra, và anh đã được bà ngoại nuôi nấng. Có lẽ do được truyền cảm hứng từ sự yên bình và tĩnh lặng của thôn quê, hoặc cũng có thể vì không biết dùng thời gian của mình để làm gì tốt hơn, chàng trai trẻ đã đắm mình trong khoa học và toán học. Sau này anh đã ghi lại: “Trong những ngày ấy, tôi đã ở đỉnh điểm của hoạt động sáng tạo trong đời, đã suy tư về toán học và triết học tự nhiên nhiều hơn bất kỳ thời gian nào khác”. Những nghiên cứu đó đã giúp anh hiểu được tầm quan trọng của định luật nghịch đảo bình phương của lực hấp dẫn, một ý tưởng đã bị xem là vô ích trong ít nhất là 50 năm. Anh đã tạo ra một phương pháp thực hành để giải các bài toán về phép tính vi tích phân, một khái niệm khác cũng đã lơ lửng tồn tại nhưng chưa được phát biểu dưới dạng tổng quát nào. Và anh cũng khám phá ra rằng ánh sáng trắng thực tế gồm nhiều màu sắc khác nhau – toàn bộ các màu của cầu vồng. Khi địch hạch chấm dứt, anh đã không kể về những khám phá của mình với bất kỳ ai. Trở lại Cambridge, anh nhận bằng thạc sĩ và trở thành nghiên cứu sinh ở Trinity. Rồi được bầu vào ghế giáo sư Lucas về toàn, cuối cùng anh đã công bố các ý tưởng của mình và phát triển các ý tưởng mới khác.

Người đàn ông trẻ tuổi đó là Isaac Newton. Những khám phá của ông đã tạo ra một cuộc cách mạng trong khoa học, mang lại một thể giới mà Charles II không bao giờ dám tin là có thể tồn tại: những tòa nhà cao hơn 100 tầng, xe không ngựa kéo đạt vận tốc 80 dặm một giờ, trong khi các tài xế vừa lái vừa nghe nhạc từ một chiếc đĩa thần kỳ làm từ một Vật liệu tựa như kính, rồi các máy bay nặng hơn không khí vượt biển Atlantic trong sáu giờ, các bức hình màu chuyển động, và các hộp mang theo trong túi dùng để nói chuyện với tận đầu bên kia của thể giới… Trước đó, Galileo Galilei, Iohannes Kepler và các nhà khoa học khác đã lật một góc của tấm thảm tự nhiên, và nhìn thấy một số điều lạ lùng ẩn giấu bên dưới nó. Bây giờ Newton đã nhấc hắn tấm thảm sang một bên. Ông không những phát lộ ra rằng Vũ trụ có những hình mẫu bí mật, đố là các định luật của tự nhiên; mà còn cung cấp các công cụ toán học để diễn tả các luật ấy một cách chính xác, và rút ra những hệ quả của chúng. Hệ thống thế giới mang tính toán học; cốt lõi sự sáng tạo của Chúa là một vũ trụ đồng hồ không có linh hồn.

Ngày nay chúng ta hầu như lờ đi khía cạnh thần bí của con người Newton, và chỉ nhớ đến ông vì những thành tựu trong khoa học và toán học. Đỉnh cao nhất trong số những thành tựu đó là sự nhận thức của ông rằng tự nhiên tuân theo các định luật toán học và việc phát minh ra phép tính vi phân và tích phôn của ông, mà ngày nay chúng ta dùng như một công cụ chủ yếu để mô tả các định luật đó và rút ra những hệ quả của chúng. Nhà toán học, triết học người Đức Gottfried Wilheim Leibniz cũng đã phát triển phép tính vi tích phân, ít nhiều độc lập và gần như đồng thời, nhưng ông đã không đi được xa. Newton đã sử dụng công cụ này để nghiên cứu vũ trụ, mặc dù, trong công trình được công bố của mình, ông đã giấu kín nó dưới một vỏ bọc, bằng cách viết lại dưới ngôn ngữ của hình học cổ điển. Ông là một nhân vật chuyển tiếp, người đã đưa nhân loại bước ra khỏi thế giới quan thần bí, trung cổ để bước vào thế giới quan duy lý, hiện đại. Sau Newton, các nhà khoa học đã nhận thức được rằng vũ trụ có nhiều hình mẫu toán học sâu sắc, và họ đã được trang bị những kỹ thuật mạnh để khai thác nhận thức sâu sắc đó. Phép tính vi tích phân không xuất hiện một cách đột nhiên. Nó xuất hiện từ các câu hỏi cả trong toán học thuần túy lẫn ứng dụng và các tiền đề của nó có thể đã bắt nguồn ngay từ thời Archimedes.

Bản thân Newton đã có nhận xét nổi tiếng rằng: “Nếu tôi có thể nhìn xa hơn một chút thì đó là vì tôi đứng trên vai những người không lồ”. Nổi bật trong số những người khổng lồ ấy là John Wallis, Pierre de Fermat, Galileo, và Kepler. Wallis phát triển một tiền thân của phép tính vi tích phân trong cuốn sách xuất bản năm 1656 của ông nhan đề Số học của Vô hạn (Arithmetica Infinitorum). Cuốn sách xuất bản năm 1679 của Fermat về tiếp tuyển của các đường cong (De Tangentibus Linearum Curvarum) đã giới thiệu một phương pháp tìm tiếp tuyến của các đường cong, một vấn đề liên quan mật thiết đến phép tính vi tích phân. Kepler đã phát biểu ba định luật cơ bản của ông về chuyển động của các hành tinh, điều này đã dẫn Newton tới định luật về hấp dẫn, và đó là chủ đề của chương tiếp theo. Galileo đã đạt được những tiến bộ lớn về thiên văn học, nhưng ông cũng nghiên cứu khía cạnh toán học của tự nhiên một cách khá thấu đáo, khi công bố các khám phá của mình trong cuốn về chuyển động (De Motu) vào năm 1590. Ông nghiên cứu chuyển động của vật rơi, và phát hiện ra quy luật toán học rất đẹp đẽ. Newton đã phát triển gợi ý này thành ba định luật tổng quát của chuyển động. Để hiểu được hình mẫu của Galileo chúng ta cần biết hai khái niệm thường gặp hằng ngày của Cơ học: Vận tốc và gia tốc. vận tốc là đại lượng cho biết độ nhanh chậm trong chuyển động của một vật và hướng của chuyển động đó. Nếu không quan tâm đến hướng, chúng ta sẽ nhận được tốc độ của vật. Gia tốc là sự thay đổi trong vận tốc, thường liên quan đến sự thay đổi về tốc độ (trừ khi tốc độ vẫn giữ nguyên nhưng hướng thì thay đổi).

Thái Vân

Post a Comment


$hide=home

$hide=mobile$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$show=mobile$type=complex$c=6$spa=0$t=oot$h=1$sn=0$rm=0$m=0$l=0$src=random$sn=0

$hide=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Name

Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,2,Amsterdam,5,Ấn Độ,1,An Giang,16,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,47,Bắc Giang,45,Bắc Kạn,1,Bạc Liêu,8,Bắc Ninh,43,Bắc Trung Bộ,8,Bài Toán Hay,5,Balkan,37,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,43,Benelux,13,Bình Định,39,Bình Dương,19,Bình Phước,37,Bình Thuận,30,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,5,Buôn Ma Thuột,1,BxMO,12,Cà Mau,12,Cần Thơ,13,Canada,39,Cao Bằng,6,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,308,Chu Tuấn Anh,1,Chuyên Đề,122,Chuyên Sư Phạm,30,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,603,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,25,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,51,Đắk Nông,5,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi HSG,1500,Đề Thi JMO,1,Điện Biên,7,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,46,Đồng Tháp,50,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,31,EGMO,16,ELMO,19,EMC,8,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,25,Gauss,1,GDTX,3,Geometry,12,Gia Lai,24,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,25,Hà Nội,220,Hà Tĩnh,66,Hà Trung Kiên,1,Hải Dương,46,Hải Phòng,40,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,32,HKUST,6,Hòa Bình,12,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,7,HSG 10,91,HSG 11,78,HSG 12,523,HSG 9,373,HSG Cấp Trường,76,HSG Quốc Gia,97,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hùng Vương,2,Hưng Yên,28,Hương Sơn,1,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,24,IMO,51,India,45,Inequality,13,InMC,1,International,303,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,14,KHTN,49,Kiên Giang,61,Kim Liên,1,Kon Tum,17,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,31,Lạng Sơn,18,Langlands,1,Lào Cai,11,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,41,Lớp 10,10,Lớp 10 Chuyên,430,Lớp 10 Không Chuyên,218,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,10,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,9,MYM,74,MYTS,4,Nam Định,30,Nam Phi,1,National,249,Nesbitt,1,Newton,4,Nghệ An,48,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,3,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,38,Ninh Thuận,14,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,94,Olympic 10/3,3,Olympic 11,86,Olympic 12,28,Olympic 24/3,6,Olympic 27/4,19,Olympic 30/4,65,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,10,Olympic Toán,292,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,26,Phú Yên,24,Phùng Hồ Hải,1,Phương Trình Hàm,10,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,41,Putnam,25,Quảng Bình,39,Quảng Nam,28,Quảng Ngãi,31,Quảng Ninh,41,Quảng Trị,23,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,68,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,22,Shortlists,55,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,27,Sơn La,11,Spain,8,Star Education,3,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,4,Tây Ban Nha,1,Tây Ninh,25,Thạch Hà,1,Thái Bình,37,Thái Nguyên,33,Thái Vân,2,Thanh Hóa,54,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,7,Thừa Thiên Huế,34,Tiền Giang,18,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TP Hồ Chí Minh,112,Trà Vinh,5,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,33,Trại Hè Hùng Vương,24,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,12,Trường Đông,17,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,55,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Tập,44,Tuymaada,4,Undergraduate,64,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,1,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,26,Vĩnh Long,18,Vĩnh Phúc,58,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,42,VNTST,20,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,25,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,16,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
ltr
item
MOlympiad: Lịch Sử Phép Tính Vi Tích Phân: Issac Newton Khơi Nguồn Cảm Hứng Sáng Tạo
Lịch Sử Phép Tính Vi Tích Phân: Issac Newton Khơi Nguồn Cảm Hứng Sáng Tạo
MOlympiad
https://www.molympiad.xyz/2020/03/lich-su-phep-tinh-vi-tich-phan-issac-newton.html
https://www.molympiad.xyz/
https://www.molympiad.xyz/
https://www.molympiad.xyz/2020/03/lich-su-phep-tinh-vi-tich-phan-issac-newton.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy