$hide=mobile

[Shortlist] Junior Balkan Mathematical Olympiad 2011

Algebra

  1. Let $a,b,c$ be positive real numbers such that $abc = 1$. Prove that $$\prod(a^5+a^4+a^3+a^2+a+1)\geq 8(a^2+a+1)(b^2+b+1)(c^2+c+1)$$
  2. Let $x, y, z$ be positive real numbers. Prove that $$\frac{x + 2y}{z + 2x + 3y}+\frac{y + 2z}{x + 2y + 3z}+\frac{z + 2x}{y + 2z + 3x} \le \frac{3}{2}$$
  3. If $a,b$ be positive real numbers, show that $$\sqrt{\dfrac{a^2+ab+b^2}{3}}+\sqrt{ab}\leq a+b$$
  4. Let $x,y$ be positive reals satisfying the condition $x^3+y^3\leq x^2+y^2$. Find the maximum value of $xy$.
  5. Determine all positive integers $a,b$ such that $$a^{2}b^{2}+208=4(\text{gcl}(a,b)+\text{lcm}(a,b))^2$$
  6. Let $x_i> 1$ for all $i \in \left \{1, 2, 3, \ldots, 2011 \right \}$. Show that $$\frac{x^2_1}{x_2-1}+\frac{x^2_2}{x_3-1}+\frac{x^2_3}{x_4-1}+\ldots+\frac{x^2_{2010}}{x_{2011}-1}+\frac{x^2_{2011}}{x_1-1}\geq 8044.$$ When the equality holds?
  7. Let $a,b,c$ be positive reals such that $abc=1$. Prove the inequality $$\frac{2a^2+\frac{1}{a}}{b+\frac{1}{a}+1} + \frac{2b^2+\frac{1}{b}}{c+\frac{1}{b}+1} + \frac{2c^2+\frac{1}{c}}{a+\frac{1}{c}+1}\geq 3$$
  8. Decipher the equality $$(\overline{LARN} -\overline{ACA}) : (\overline{CYP} +\overline{RUS}) = C^{Y^P} \cdot R^{U^S}$$ where different symbols correspond to different digits and equal symbols correspond to equal digits. It is also supposed that all these digits are different from $0$.
  9. Let $x_1,x_2, ..., x_n$ be real numbers satisfying $$\sum_{k=1}^{n-1} \min(x_k; x_{k+1}) = \min(x_1; x_n).$$ Prove that $$\sum_{k=2}^{n-1} x_k \ge 0.$$

Combinatorics

  1. Inside of a square whose side length is $1$ there are a few circles such that the sum of their circumferences is equal to $10$. Show that there exists a line that meets at least four of these circles.
  2. Can we divide an equilateral triangle $\triangle ABC$ into $2011$ small triangles using $122$ straight lines? (there should be $2011$ triangles that are not themselves divided into smaller parts and there should be no polygons which are not triangles)
  3. We can change a natural number $n$ in three ways 
      • If the number $n$ has at least two digits, we erase the last digit and we subtract that digit from the remaining number (for example, from $123$ we get $12 - 3 = 9$);
      • If the last digit is different from $0$, we can change the order of the digits in the opposite one (for example, from $123$ we get $321$);
      • We can multiply the number $n$ by a number from the set $ \{1, 2, 3,..., 2010\}$.
      1. Can we get the number $21062011$ from the number $1012011$?
      2. In a group of $n$ people, each one had a different ball. They performed a sequence of swaps, in each swap, two people swapped the ball they had at that moment. Each pair of people performed at least one swap. In the end each person had the ball he/she had at the start. Find the least possible number of swaps, if
        a) $n = 5$,
        b) $n = 6$.
      3. A set $S$ of natural numbers is called good, if for each element $x \in S, x$ does not divide the sum of the remaining numbers in $S$. Find the maximal possible number of elements of a good set which is a subset of the set $$A = \{1,2, 3, ...,63\}.$$
      4. Let $n>3$ be a positive integer. Equilateral triangle ABC is divided into $n^2$ smaller congruent equilateral triangles (with sides parallel to its sides). Let $m$ be the number of rhombuses that contain two small equilateral triangles and $d$ the number of rhombuses that contain eight small equilateral triangles. Find the difference $m-d$ in terms of $n$.
      5. Consider a rectangle whose lengths of sides are natural numbers. If someone places as many squares as possible, each with area $3$, inside of the given rectangle, such that the sides of the squares are parallel to the rectangle sides, then the maximal number of these squares fill exactly half of the area of the rectangle. Determine the dimensions of all rectangles with this property.
      6. Determine the polygons with $n$ sides $(n \ge 4)$, not necessarily convex, which satisfy the property that the reflection of every vertex of polygon with respect to every diagonal of the polygon does not fall outside the polygon. (Each segment joining two non-neighboring vertices of the polygon is a diagonal. The reflection is considered with respect to the support line of the diagonal.)
      7. Decide if it is possible to consider $2011$ points in a plane such that the distance between every two of these points is different from $1$ and each unit circle centered at one of these points leaves exactly $1005$ points outside the circle.

      Geometry

      1. Let $ABC$ be an isosceles triangle with $AB=AC$. On the extension of the side ${CA}$ we consider the point ${D}$ such that ${AD<AC}$. The perpendicular bisector of the segment ${BD}$ meets the internal and the external bisectors of the angle $\angle BAC$ at the points ${E}$and ${Z}$, respectively. Prove that the points ${A, E, D, Z}$ are concyclic.
      2. Let $AD$, $BF$ and ${CE}$ be the altitudes of $\triangle ABC$. A line passing through ${D}$ and parallel to ${AB}$ intersects the line ${EF}$ at the point ${G}$. If ${H}$ is the orthocenter of $\triangle ABC$, find the angle ${\angle{CGH}}$.
      3. Let $ABC$ be a triangle in which (${BL}$is the angle bisector of ${\angle{ABC}}$ $\left( L\in AC \right)$, ${AH}$ is an altitude of $\triangle ABC$ $\left( H\in BC \right)$ and ${M}$ is the midpoint of the side ${AB}$. It is known that the midpoints of the segments ${BL}$ and ${MH}$ coincides. Determine the internal angles of triangle $\triangle ABC$.
      4. Point ${D}$ lies on the side ${BC}$ of $\triangle ABC$. The circumcenters of $\triangle ADC$ and $\triangle BAD$ are ${O_1}$ and ${O_2}$, respectively and ${O_1O_2\parallel AB}$. The orthocenter of $\triangle ADC$ is ${H}$ and $AH=O_1O_2$. Find the angles of $\triangle ABC$ if $2\angle C=3\angle B.$
      5. Inside the square ${ABCD}$, the equilateral triangle $\triangle ABE$ is constructed. Let ${M}$ be an interior point of the triangle $\triangle ABE$ such that $MB=\sqrt{2}$, $MC=\sqrt{6}$, $MD=\sqrt{5}$ and $ME=\sqrt{3}$. Find the area of the square ${ABCD}$.
      6. Let $ABCD$ be a convex quadrilateral and points $E$ and $F$ on sides $AB$, $CD$ such that \[\frac{AB}{AE}=\frac{CD}{DF}=n.\] Show that iIf $S$ is the area of $AEFD$ then $${S\leq\frac{AB\cdot CD+n(n-1)AD^2+n^2DA\cdot BC}{2n^2}}$$

      Number Theory

      1. Solve in positive integers the equation $$1005^x + 2011^y = 1006^z.$$
      2. Find all primes $p$ such that there exist positive integers $x,y$ that satisfy $$x(y^2-p)+y(x^2-p)=5p$$
      3. Find all positive integers $n$ such that the equation $$y^2 + xy + 3x = n(x^2 + xy + 3y)$$ has at least a solution $(x, y)$ in positive integers. 
      4. Find all primes $p,q$ such that $$2p^3-q^2=2(p+q)^2.$$
      5. Find the least positive integer such that the sum of its digits is $2011$ and the product of its digits is a power of $6$.

      Post a Comment


      $hide=home

      $hide=mobile$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

      $show=mobile$type=complex$c=6$spa=0$t=oot$h=1$sn=0$rm=0$m=0$l=0$src=random$sn=0

      $hide=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

      Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

      Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

      Name

      Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,2,Amsterdam,5,Ấn Độ,1,An Giang,16,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,47,Bắc Giang,45,Bắc Kạn,1,Bạc Liêu,8,Bắc Ninh,43,Bắc Trung Bộ,8,Bài Toán Hay,5,Balkan,37,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,43,Benelux,13,Bình Định,39,Bình Dương,19,Bình Phước,37,Bình Thuận,30,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,5,Buôn Ma Thuột,1,BxMO,12,Cà Mau,12,Cần Thơ,13,Canada,39,Cao Bằng,6,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,308,Chu Tuấn Anh,1,Chuyên Đề,122,Chuyên Sư Phạm,30,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,603,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,25,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,51,Đắk Nông,5,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi HSG,1500,Đề Thi JMO,1,Điện Biên,7,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,46,Đồng Tháp,50,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,31,EGMO,16,ELMO,19,EMC,8,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,25,Gauss,1,GDTX,3,Geometry,12,Gia Lai,24,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,25,Hà Nội,220,Hà Tĩnh,66,Hà Trung Kiên,1,Hải Dương,46,Hải Phòng,40,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,32,HKUST,6,Hòa Bình,12,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,7,HSG 10,91,HSG 11,78,HSG 12,523,HSG 9,373,HSG Cấp Trường,76,HSG Quốc Gia,97,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hùng Vương,2,Hưng Yên,28,Hương Sơn,1,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,24,IMO,51,India,45,Inequality,13,InMC,1,International,303,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,14,KHTN,49,Kiên Giang,61,Kim Liên,1,Kon Tum,17,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,31,Lạng Sơn,18,Langlands,1,Lào Cai,11,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,41,Lớp 10,10,Lớp 10 Chuyên,430,Lớp 10 Không Chuyên,218,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,10,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,9,MYM,74,MYTS,4,Nam Định,30,Nam Phi,1,National,249,Nesbitt,1,Newton,4,Nghệ An,48,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,3,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,38,Ninh Thuận,14,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,94,Olympic 10/3,3,Olympic 11,86,Olympic 12,28,Olympic 24/3,6,Olympic 27/4,19,Olympic 30/4,65,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,10,Olympic Toán,292,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,26,Phú Yên,24,Phùng Hồ Hải,1,Phương Trình Hàm,10,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,41,Putnam,25,Quảng Bình,39,Quảng Nam,28,Quảng Ngãi,31,Quảng Ninh,41,Quảng Trị,23,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,68,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,22,Shortlists,55,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,27,Sơn La,11,Spain,8,Star Education,3,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,4,Tây Ban Nha,1,Tây Ninh,25,Thạch Hà,1,Thái Bình,37,Thái Nguyên,33,Thái Vân,2,Thanh Hóa,54,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,7,Thừa Thiên Huế,34,Tiền Giang,18,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TP Hồ Chí Minh,112,Trà Vinh,5,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,33,Trại Hè Hùng Vương,24,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,12,Trường Đông,17,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,55,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Tập,44,Tuymaada,4,Undergraduate,64,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,1,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,26,Vĩnh Long,18,Vĩnh Phúc,58,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,42,VNTST,20,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,25,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,16,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
      ltr
      item
      MOlympiad: [Shortlist] Junior Balkan Mathematical Olympiad 2011
      [Shortlist] Junior Balkan Mathematical Olympiad 2011
      MOlympiad
      https://www.molympiad.xyz/2019/05/junior-balkan-mathematical-olympiad-shortlist-2011.html
      https://www.molympiad.xyz/
      https://www.molympiad.xyz/
      https://www.molympiad.xyz/2019/05/junior-balkan-mathematical-olympiad-shortlist-2011.html
      true
      2506595080985176441
      UTF-8
      Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy